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AI/Machine Learning/Deep Learning



Artificial Intelligence vs Machine Learning vs Deep Learning 

Artificial Intelligence

Machine Learning

Deep Learning Any technique that 
enables computers 
to mimic human 
intelligence, using 
logic, if-then rules, 
decision trees, and 
machine learning 
(including deep 
learning)

A subset of AI that 
includes abstruse 
statistical techniques that 
enable machines to 
improve at tasks with 
experience. The category 
includes deep learning

The subset of machine learning 
composed of algorithms that permit 
software to train itself to perform 
tasks, like speech and image 
recognition, by exposing 
multilayered neural networks to 
vast amount of data.



인공지능(AI)의 분류

Source: Chethan Kumar, Iqreate Infotech



기계학습(Machine Learning)의 분류

https://data-flair.training/



Machine Learning

https://techvidvan.com/



Machine Learning and Applications

https://www.guru99.com/machine-learning-tutorial.html



Machine Learning Techniques



Deep Learning

https://thenewstack.io/demystifying-deep-learning-and-artificial-intelligence/https://datawider.com/



Neural Network (NN)



Artificial Neural Network (ANN)
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Deep Learning: Convolutional Neural Network (CNN)

 CNN is powerful for image classification. 



Deep Learning: CNN

 Example for handwritten digits 



Deep Learning: Recurrent Neural Network (RNN)

 Powerful for tasks that are dependent on a sequence of successive states
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플라즈마 분석을 위한 빅데이터 분석 기법

 Multivariate Analysis Techniques
• Principal Component Analysis (PCA)
• Real-time Density-based Clustering Analysis
• K-Means Clustering Analysis
• Gaussian Mixture Model

 Artificial Neural Network/Deep Learning



반도체 공정



Micro/Nano-scale Integrated Circuit (IC) 

 Plasma processing steps are 30~40% of IC fabrication processing.

Minimum CD 
< 10nm @ 2020



조립 공정

Oxidation PR 도포 Exposure Development Etching

Ion 주입CVDMetallization

Major Processing Steps



Semiconductor Industry

Device Maker
(IDM, Foundry)

- Logic Devices
- Memory/Storage Devices
- Communication Devices
- Display/MEMS

Equipment Maker
- Process Tools
(Lithography, Etcher, CVD)

- Measurement Tools
- Facilities

Material Provider
- Wafers
- Chemicals
- Gases
- Consumables



Processing Tools and Parts

https://www.valin.com/
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반도체 공정 기술 동향

 소자의 초미세화: ~10nm 크기 패터닝 인쇄 및 식각 기술
• Multiple patterning technology
• EUV technology 

 소자의 3차원화: 초박막 적층기술, 고종횡비 식각 기술
• FinFET transitors and 3D NAND structure
• Atomic layer processing
• High aspect ratio processing

 화학반응의 복잡화
• More and more elements are adopted
• Diversified precursors

 공정의 저온화: 플라즈마 기술
• Plasma processing

 기계학습/AI데이터 분석 기법의 적용



Transistor

 MOSFET (metal-oxide-semiconductor field effect transistor)

Source
Gate

Drain

n+ n+

p-type silicon 
substrate

Ohmic contact

Oxide



Cross-section of DRAM and Flash Memory Devices

• Minimum critical dimension is < 20 nm in 2018.

Minimum CD 
< 20nm @ 2018



소자의 입체화: 3D Structure

3D NAND



소자의 입체화: 3D Structure



3D cells require high aspect ratio plasma etching



Scaling of 2D Planar and 3D Vertical NAND

http://pc.watch.impress.co.jp/docs/column/kaigai/612339.html



Billions of Holes per Die

Source: Applied Materials



3D NAND: TCAT Process 



3D NAND Flash Memory



Process Challenges in 3D NAND



3D V-NAND Challenge

※ SEMICON China, LAM

Etch Deposition
▶ 적층 수 증가에 따른 고종횡비 식각필요

 선택비 상향, 반응부산물 효율적인 제거

▶ Charging Effect에 따른 Profile 변화
 Pulse 적용

▶ 공정 진단 기술

▶ 적층높이 증가에 따른 증착공정 수 증가
 균일한 막질의 증착조건, 높은 생산성

▶ ALD 공정
 높은 Step Coverage, Void Free조건 확보

▶ Defect 제어



공정의 복잡화

[IC Knowledge Strategic Cost Model, KLA-Tencor internal data]



 플라즈마를 이용한 반도체 및 디스플레이 패널 생산 공정이 세분화되고 다양한
소재들이 공정에 도입됨에 따라, 식각 및 증착 공정에서 발생하는 공정 데이터의
크기가 증가하고 있음.

Necessity of Machine Learning

35

In the past two decades
Storage X 3,000

Computing Power X 10,000
Biological Data X 2,000,000
Data-Driven Bioengineering

 데이터의 저장 및 계산 능력의 발전보다 데이터의 크기 증가가 넘어서고 있다. 
이를 해결하기 위해 인공지능 및 머신러닝, 딥러닝의 도입이 요구되고 있다.

TimeNow

Analysis Capacity

Data



플라즈마 공정



Plasma

 Plasma (soup of ions, electrons & neutrals)
• 4th state of matter
• Ionized Gas
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자연의 플라즈마



영화속의 플라즈마

Back to the future (1985)



영화속의 플라즈마

Ironman (2008)



반도체공정에 사용되는 플라즈마

 진공내에서 전기장을 형성
하여 플라즈마 형성



Useful Plasma: Energy Barrier Reduction

Radical A*, 
Radical B*

plasma

Arrhenius Plot of CVD and PECVD

• Radicals in plasma reduces energy barrier.
• Plasma makes low temperature process possible.



Process Development for Low-T Processes

Plasma sources
- Density control
. CCP
. ICP
. Microwave
. Atmospheric
… 

Precursors
- Chemical bonding (ex.) 

. Si-H

. Si-Cl

. Si-C

. Si-N
- Molecular weight
- Chemical structure 

Processes
- Temperature
- Pressure
- Composition
- Additives
- Flow control
…



Processes in Semiconductor Device Fabrication

Thermal 

Processes

Wet Chemical 

Processes

Plasma

Processes

Physical/

Mechanical

Processes

Thin Films Thermal 
oxidation 

Epitaxial

Evaporation

Electroplating Sputtering 

PECVD 

HDP-CVD

Sputtering

Lithography Baking UV exposure

Developing

Light source Spin Coating

Optics

Film Removal - Wet etching Plasma etching CMP 

Cleaning - Wet cleaning Plasma ashing Ultrasonic

Doping Diffusion - Plasma 
implantation

Ion implantation



Process Overview and Plasma Processes



Reactions in Plasma

Homogeneous Reactions
- Recombination of Ions:
- Charge Transfer:
- Transfer of heavy reactants:
- Radical-Molecule Reaction: 

- Electron Transfer 
- Penning Ionization
- Attachment of Atoms
- Recombination of radicals
- Chemiluminescence

Hetetrogenous Reactions
- Adsorption
- Metastable deexcitation
- Polymerization



플라즈마공정의 복잡성 (플라즈마 내 화학반응)
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 CF4 플라즈마에서 발생하는 Ions, Radicals, Electrons(예시)

 O2 플라즈마내의 화학반응



Plasma Monitoring: Endpoint Detection

 To control etching rate is important for IC manufacturing.
 It is necessary to avoid incomplete-etching & over-etching.
 Decreasing feature size, it becomes more and more challenging to detect 

endpoint.

Si wafer

Layer A
PR PR

Before 
etching

Layer B
Si wafer

PR PR

After etching
Over etching

( X )

Si wafer

PR PR

After etching
Incomplete-etching

( X )

Si wafer

PR PR

After etching
Complete-etching

( O )

• It is critical to end the plasma etching process at target depth.
• Sensitive plasma monitoring required.



Endpoint Detection

Incomplete-etching & Over-etching

Underlying

Target

PR

• Need to stop the etching process at a proper moment, known as endpoint detection(EPD)

• Failure of endpoint detection → Device failure & Yield reduction

Proper Endpoint Detection Failure of Endpoint Detection

Target layer etching

Underlying

Target

PR

Underlying

Target

PR

Cannot detect endpoint in small open area and low pressure

→ Need to enhance sensitivity of signal using   

multivariate analysis
https://www.orbotech.com/spts/about/resources/tech-insights/mems-tech-
insights/plasma-etch-end-point-control

• EPD issue



Non-Invasive Plasma Monitoring Tools

Vacuum
 Exhaust Foreline

OES

Optical
Fiber

Self Plasma
VI Probe

RF Bias Power 
(12.56MHz)

Gas Inlet

Dielectric
Window

Wafer

Plasma

SPOES

 1998 channels

Non-Invasive Ion Monitor

 Γi, ni, Te

- Physical information
- V, I, θ, 1st-5th harmonics

Chemical

Physical

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

195.9 328.95 459.95 588.82 715.47 839.8 961.73 1081.17
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Wavelength(nm)

Chemical Information
- 1998 channels



반도체 공정데이터 분석의 예



Plasma Monitoring: Principal Component Analysis (PCA)
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K-Means Clustering Analysis
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 K-means Cluster Analysis (KMC)

• Cluster analysis is suitable for fault identification in complex systems



Plasma Monitoring: VI Probe & PCA

EPD (VI probe): physical information
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Plasma process polym. 10, 850 (2013)Ind. Eng. Chem. Res, 47, 11, (2008)

EPD (OES) : chemical information

• Modified Principle 
Component Analysis

• Endpoint detection sensitivity improved by PCA algorithm

Si wafer
1% open area

SiO2  
PR PR



Modified PCA with Impedance Monitoring
 Plasma Impedance monitoring with 

PCA

• The 1st principal component (PC1) 
is chosen : The most sensitive PC

 Comparison : Rate of Change

• Signal intensity : -4.70 → -9.56 

• (about 2 times)

Contribution Ratio

1st PC 76.40%

2nd PC 16.49%

3rd PC 4.25%

295 300 305 310 315
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2nd -2.97 -2.92 -2.56

3rd -2.84 -2.99 -4.70

4th 2.86 2.82 -4.42

5th -3.85 -3.91 -3.04

(Normalized)

Plasma Process. Polym. 10, 850 (2013)
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Modified PCA with Impedance Monitoring
• Target 1.0% SiO2 area

• Target 0.5% SiO2 area
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Plasma Monitoring: Cluster Analysis
 Gaussian Mixture Model (GMM)

Raw data

Centroid of gaussian 1

Group 1
Group 2

Centroid of gaussian 2

▶Gaussian distribution

0.9
0.6
0.3
0.1

Occurrence probability 
of record in cluster

K-means cluster analysisRaw data Gaussian mixture model

 Gaussian distribution parameters



Sensitivity Enhancement by Select Wavelengths

59

 Common spectral lines in SiO2 etching applications

Species Wavelength (nm)

Ar 434.8, 476.5, 488.0, 696.5, 706.7, 738.4, 750.4, 751.5, 763.5, 772.4, 794.8

C 283.7, 426.7, 732.6

CF 240.0, 247.4, 255.8

CF2 248.8, 251.9, 259.5, 262.9, 271.1, 275.0, 280.0, 292.1, 321.4

CO 238.9, 269.8, 283.3, 292.5, 302.8, 313.4, 313.8, 325.3, 330.6, 349.3, 451.1, 
482.5, 483.5, 519.8, 561.0, 608.0, 662.0

F 623.9, 634.8, 641.4, 677.4, 683.4, 685.4, 685.6, 6870, 690.2, 691.0, 696.6, 
703.7, 712.8, 720.2, 733.2, 739.9, 742.6, 755.2, 757.3, 760.7, 775.5, 780.0

O 391.2, 397.3, 407.6, 419.0, 464.9, 615.6, 615.7, 615.8, 645.6, 725.4, 777.2, 
844.7

Si 288.2, 504.1, 505.5, 634.7, 637.1

SiF 334.6, 336.3, 436.8, 440.1, 777.0

SiF2 390.2, 395.5

SiO 229.9, 234.4, 241.4, 248.7, 266.9, 269.4
http://www.verityinst.com/

 Endpoint detection by using multivariate techniques for 95# select wavelengths

6144 channels → 95 select wavelengths 



EPD with Select Wavelengths: SiO2 Etching
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8% area SiO2 4% area SiO2

1% area SiO2 EPD 8% 2% 1%

GMM with all 
wavelengths

19.76 O 9.10 O 17.44 O

PCA (1st PC) with 
select wavelengths 20.36 O 6.41 O 2.93 X

KMC with select
wavelengths

29.48 O 32.76 O 16.04 O

GMM with select 
wavelengths

37.25 O 33.27 O 20.91 O
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Sensitivity
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Sensitivity Analysis and Enhancement: Bias Power
 Examples: Endpoint & Arcing Detection
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Detecting Endpoint & Arcing
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Fault Detection: MFC malfunction
Optical Emission Spectroscopy V-I probe

PCA & K-means Cluster Analysis PCA & K-means Cluster Analysis
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Machine Learning for Semiconductor Processing

Area Process Measurement
(Variable)

Data
(size) Topic Ref

Fault Detection CVD
(simulation)

10 variables (Temperature,
Pressure, Flow rate, etc.)

10,000 wafer 
(6 types classification)

105seceds(0.2 time interval)

1D convolution layer 
structure for higher 

speed

IEEE TRANSACTIONS ON 
SEMICONDUCTOR 

MANUFACTURING, VOL. 30, 
NO. 2, MAY 2017

Fault Detection Monitoring OES data(150nm to 1000nm) 2048 wavelengths DWT(3 layers, 
soft thresholding)

Computers and Chemical 
Engineering 94 (2016) 362–

369 

Fault Detection Wafer 
Classification 112 process variables 76 wafers (60 for training, 16 

for test)
LASSO

Multi-level LASSO

IEEE International 
Conference on Automation 

Science and Engineering 
Trieste (2011)

Fault Detection Wafer 
Classification

17 variables
(flow rate, power impedance, 

pressure, tuner, etc.)

100 times of 107 wafers
(97 for training, 10 for test) kNN, PC-kNN, RP-kNN

IEEE TRANSACTIONS ON 
SEMICONDUCTOR 
MANUFACTURING, VOL. 28, 
NO. 1, FEBRUARY 2015

Fault Detection Plasma Etching 12 variables(Pressure, Tuner, 
Power, valve, etc.)

120 wafers
(normal 100 wafers and 20 

types of fault wafer)

PCA(preprocessing)
GMM(NLLP, MD)

Yu et al. IEEE 
TRANSACTIONS ON 
SEMICONDUCTOR 

MANUFACTURING, VOL. 24, 
NO. 3, (2011)

Fault Detection Plasma Etching 31 sensors readings
for each wafer

782 wafers with 8 recipes
(490 for training, 292 for test)

SVM, K-Means 
Clustering

Self-Organizing MAP

Rostami et al, 15th IEEE 
International Conference 
on Machine Learning and 

Applications (2016)

Optimization Lithography
(EPC)

Variable : 34 parameters(24 
local densities and 10 optical 

kernel signals)

1,600 segments(1,000 for 
training, 600 for test)

34 input nodes, 3 hidden 
layers(10 hidden nodes), 

1 output node

Advanced Etch Technology 
for Nano patterning V, 

97820O (2016)

Optimization Lithography
(OPC)

Spatial frequency, wave length, 
pattern error

3 types of pattern(contacts, 
multiple gates, complex one)

Stochastic gradient 
descent(SGD)

Jia et al. Machine 
learning for inverse 
lithography J. Opt. 12. 
(2010)

Virtual 
Metrology

Plasma Etching OES data(1747 wavelength) 1747 cases of process CNN with image input

M. Terzi at al, IEEE 3rd 
International Forum on 

Research and Technologies 
for Society and Industry 

(2017)
64



CNN for Fault Classification and Diagnosis 
Lee et al, IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 30, NO. 2 (2017)

 Fault Detection and Classification Convolution Neural Network(FDC-CNN)
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 Structure of convolutional neural network

 Input data:
wafer with 10 process 
variables 

Process Chemical Vapor Deposition(CVD)

Time(scale) 105 seconds(0.2 second)

Variable(number) Temperature, pressure, gas flow rate for each wafer, etc.(10)

Preprocessing Scaling to a range of 0 to 1

Output Class(total 6 with normal and 5 types of faults)

Training data 5,000 normal wafers and 5,000 fault wafers data(1,000 for each fault type)

Test data 1,000 normal wafers and 1,000 fault wafers data(200 for each fault type)

 Output:
Class of wafer(normal 
and 5 types of fault)



Ha et al, Computers and Chemical Engineering 94 (2016) 362–369 
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Process Plasma Etching(Fault Detection)

Data type Optical Emission Spectroscopy(OES) data

Wavelengths(resolution) 150nm to 1000nm(0.4nm)

Preprocessing Automatic variable selection algorithm,
Discrete Wavelet Transform

Output Signal(Sensitivity enhancement, noise reduction)

Plasma condition 20 mT of pressure, 300 W of60 MHz RF power, 
400 sc cm of Ar flow rate, and 16 sccm of SF6 flow rate

 Improvement of PCA modeling through DWT and automatic variable 
selection

OES spectrum data before and after 
applying peak wavelength selection 
algorithm.

Time resolved signal of Ar emission at 
750 nm wavelength before and after DWT.

Sensitivity Enhancement with PCA Modeling in Plasma Etch



Fault Detection using Random Projection KNN
Zhou et al. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 28, NO. 1, (2015)
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 Fault Detection using Random Projections and k-Nearest Neighbor 

 Fault detection using FD-kNN
(k=3)

 Fault detection using PC-kNN
(PC1)

Process
Plasma Etching(TiN/A1-0.5% Cu/TiN/oxide 
stack with an inductively coupled BCl3/Cl2 

plasma. )

Variables
(number)

flow rate, power impedance, pressure, tuner, 
etc.(17)

Preprocessing Scaling to zero mean and unit variance for 
variables

Output Classification(20 types of faults)

Training data 97 wafers selected randomly for 100 times

Test data 10 wafers for validation respectively

 Input data

 Comparison of computation speed 



Fault Detection Using PCA-based GMM
Yu et al. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 24, NO. 3, (2011)
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Fault Detection Using Principal Components-Based Gaussian 
Mixture Model

Process Fault detection after plasm etching

Variable(number)
End point A detector, Helium pressure, RF tuner, RF load, RF phase error, RF power, 
RF impedance, Transformer-coupled plasma tuner, Transformer-coupled plasma 
phase error, Transformer-coupled plasma reflected power, Transformer-coupled 
plasma load, VAT valve(12)

Preprocessing Principal component Analysis(PCA) for dimension reduction

Output NLLP AND MD for Fault classification with threshold

Training data 100 wafers with 12 process variables

Test data 100 wafers with 12 process variables

PCGMM

 Bivariate scores of PCGMM with PC1 
and PC2



Equipment Condition Diagnosis & Fault Fingerprint Extraction
Rostami et al, 15th IEEE International Conference on Machine Learning and Applications (2016)
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 Equipment condition diagnosis(ECD) and fault fingerprint extraction

Process Fault detection of equipment

Variable(number) 31 sensors reading for each wafer in plasma etching process

Preprocessing SVM as a state-of-the-art classification method
Principal component Analysis(PCA) for dimension reduction

Output Fault finger prints

Training data 490 wafers with 8 recipes(197,562 observations)

Test data 292 wafers with 8 recipes(66,835 observations)

 SVID(Status Variable Identifications)



EPC through ML-Driven Etch Bias Model

 Etch Proximity Correction(EPC) through Machine Learning-Driven Etch 
Bias Model

Shim et al. Advanced Etch Technology for Nano patterning V, 97820O (2016)
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Process Lithography

Variable
(number)

24 local densities and 10 optical kernel 
signals(34)

Preprocessing Representative segments selected by K-mean
method

Output Predicted etch bias

Training data 1,000 segments with local/optical variables

Test data 600 segments with local/optical variables

 Etch bias by etch proximity 
effect

 Structure of EPC with 
ANN

 Input data:
Parameters from segments

 Output: Etch bias
 Parameterization of a 

pattern



Machine Learning for Inverse Lithography

71

Process Lithography(OPC)

Variable
(number)

Spatial frequency, wave length, pattern error

Preprocessing Representative segments selected by K-mean
method

Output mask pattern

Training data 3 types of pattern(contacts, multiple gates, 
complex one)

Comparative
method

Standard gradient descent(GD)
batch gradient descent(BGD)

Jia et al. Machine learning for inverse lithography J. Opt. 12. (2010)

ML for inverse lithography: Stochastic gradient descent for robust photomask 
synthesis

 GD

 SGD

 BGD

 Result of pattern



M. Terzi at al, 2017 IEEE 3rd International Forum on Research and Technologies for Society and 
Industry (2017)
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Modeling with OES Data in plasma etching process

Virtual Metrology with Deep Learning: Etch Rate 

▶OES spectrum with the time series

Input data : 
image of OES data

Output data : 
Etch rate

Process Plasma Etching

Data type Slice image of OES data

Data size 1747 process for 2048 time series

Preprocessing
Principal Component Analysis(PCA) for 
dimension reduction to 100 input 
variables

Output Etch rate

 Comparison of Ridge Regression and CNN 
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요약

 다양한 Machine Learning과 Deep Learning 기법이 개발되고 있음.

 반도체 공정 데이터의 폭발적인 증가가 진행중임.

 플라즈마 공정을 포함한 복잡한 공정에 Machine Learning 기법
이 적용되고 있음.

 반도체 공정 데이터 분석 사례가 늘어남.
• Sensitivity Enhancement
• Fault Detection
• Optimization
• Virtual Metrology


